import os from timeit import default_timer as timer from star_reader import read_stars from tree import Tree def log(s, open_file): print(s) open_file.write(str(s) + '\n') if __name__ == '__main__': if not os.path.exists("output"): os.mkdir("output") if not os.path.exists("output/tree_testing.txt"): output = open("output/tree_testing.txt", 'w', encoding="utf-8") else: output = open("output/tree_testing.txt", 'a', encoding="utf-8") dataset, fields = read_stars() log("\n----------\n", output) log("Training Tree...", output) t_start = timer() split = int(len(dataset) * 0.65) training, testing = dataset[:split], dataset[split + 1:] log("Training set: {} entries.".format(len(training)), output) log("Testing set: {} entries.".format(len(testing)), output) tree = Tree(fields, training) t_end = timer() timestamp = "Training complete.\nElapsed time: {:.3f}\n" log(timestamp.format(t_end - t_start), output) log(tree, output) log("\n-- TEST --\n", output) failures = 0 for entry in testing: label = entry.label predict = tree.predict(entry) if predict not in label: print("Actual: {}\tPredicted: {}".format(label, predict)) failures += 1 tested = len(testing) success = tested - failures s_rate = float(success)*100/float(tested) log("\nSuccessfully predicted {} out of {} entries." .format(success, tested), output) log("Accuracy: {:.2f}%\nError: {:.2f}%".format(s_rate, 100-s_rate), output) output.close()